Cookie Consent

Cookies are used for statistical purposes and to improve the site.
Cookies will be used after you click "Accept" or if you continue using Dynisco.com
To find out more please review our Privacy Policy.

Accept

EPR3 Push Rod Sensors

The push - rod design is suitable for applications where the use of a filled system may not be desirable, such as the extrusion of food and medical products and the manufacture of photographic film. Model EPR3 is available in pressure ranges from 0 - 1,500 through 0 - 10,000 psi.
  • Better than ±0.5% accuracy
  • Push - rod design
  • Measures up to 750°F (400°C)
  • All stainless steel, wetted parts
  • Internal 80% shunt calibration

Certifications

ISO 9001 Certificate

Collateral

Dynisco Product Portfolio

From breakthrough technology in the industry’s most complete line of sensors to renowned quality and performance in indicators, controls, and analytical instruments Dynisco has demonstrated the skill, experience and know-how that not only deliver the right solution for your unique application, but also provide unparalleled customer support.

Training's

Dynisco Pressure Sensor Care and Maintenance

Learn about the proper care and handling of your Dynisco Pressure Sensors

Videos

Dynisco Online Shop Overview

Dynisco’s Online Shop is where you can have access to ordering all Dynisco parts from Polymer Testing Equipment to Sensors to accessories- all to optimize your application.

Dynisco Pressure Sensor Care and Maintenance

In order to maintain your Dynisco pressure sensor's reliability and accuracy over time, certain maintenance and cleaning procedures should be followed. This video focuses on the removal, care, and maintenance process of a Dynisco pressure sensor from an extruder

Sensor Portfolio Overview

At Dynisco, we offer a diverse portfolio of pressure transducers for your unique application. Whether you're looking for industry-leading accuracy and pressure capability, sustainability without sacrificing performance, or reliability on a budget, our sensors can be configured to fit your specific niche.

Relevant Articles

Understanding Pressure Measurement Needs of Plastic Manufacturing

Divided into 3 sections, obtain a general understanding of pressure transducer basics, the types of plastic extrusion, and the benefits of pressure transducers.

Tech Notes

Oil Fill Offset

An oil‐filled sensor has the advantage of being non‐toxic and therefore compliant for many food, medical or other critical applications. A disadvantage of an oil‐filled system is that the organic oil fill can degrade over time at high temperatures.

I'm afraid that I have to respond to your question with a question. Do you want an accurate signal from the transducer during the vacuum part of the process? If so, the answer to the original question is "no"!

If the real question was, "Will the transducer be harmed by a vacuum?", then the answer is "no". Remember a full vacuum is 0 psia or -15 psig. Compared to the full scale range of a transducer of 0-500 psig and probably higher, 15 psi is almost nothing. The transducer will barely notice anything different. The construction of the tip and diaphragm is such that a vacuum causes only a tiny fraction of stresses that it is designed to withstand.

"But suppose," I hear you ask, "I want just an indication of vacuum, not absolute accuracy." Now I must become equivocal. It will probably work. We have performed some testing here, on units from our stock, that indicates a fairly accurate negative output corresponding to increasing vacuum, i.e. output becomes more negative as pressure goes below atmospheric. But this depends on a perfectly filled capillary system. In an ideal world, I would have no qualms about recommending melt pressure transducers for these applications. Since reality is often not ideal and the transducer may not be perfect, a fact we do not like to admit, the output in vacuum may not have the same accuracy as it would for a pressure measurement. Nevertheless, most transducers should give a negative signal in vaccum.

Two caveats - Do not try this with an amplified model such as a 2-wire transmitter. The output cannot go below 4 mA enough to be meaningful. Secondly, if there are significant temperature variations in the process the change in tip temperature could cause a much greater change in output than the vacuum.

Perhaps it is time for a little lesson on screw threads! I am sure that everyone knows that "1/2" is the major diameter of the thread in inches and "20" is the number of threads per inch. For those who don't know, the UN refers to United Screw Thread which is one of the thread forms recognized as an American National Standard. The standard further defines the dimensions, shape height, depth, angles, tolerances, etc. of each thread. The "F" following the "UN" designates "Fine-Thread Series". These series (there are also "C" for "Coarse-Thread Series" and "EF" for "Extra-Fine-Thread Series") are particular combinations of diameter and threads per inch that are selected based on the application. For example, Coarse-Thread devices are used for threading into lower tensile strength materials and softer materials or where rapid assembly/disassembly is desirable or where corrosion or damage to threads is likely. The Fine-Thread Series are found in most other applications where the Coarse threads are not appropriate.

The "2A" or "2B" calls out the thread class. Without going into a long dissertation, this defines the tolerances and allowances on all the parameters of the thread. The "_A" classes are for external threads and the "_B" for internal threads. (Now, I hope you see why the transducer is specified with the "-2A" designation and the mounting well is "-2B".) The Class 2 fit is used on most high quality commercial products. Class 1 is looser and used only for rapid assembly/disassembly and where shake or play is not objectionable. Conversely, Class 3 is found on exceptionally high precision products.

Anyone, with an insatiable curiosity, can consult any mechanical engineering handbook for pages of tabulations of all threads, their dimensions and tolerances. I am indebted to the Dynisco Drafting Department for their assistance in providing me with more information than I ever wanted to know about threads.

It seems only fair that we discuss the pressure fitting of the general purpose transducers, after a dissertation on the threads of the standard melt pressure models. This should satisfy the equal time requirement.

Providing a good seal in plumbing connections, where system pressures exceed 10,000 psig, presents a significant challenge. O-rings and gaskets may leak. Pipe threads cannot withstand the forces generated by the high pressures. (Please remember that we must test the units to at least 1.5 times rated pressure for our overpressure specification.) Over 50 years ago, NBS (now NIST) developed a design for high pressure fittings that addresses these issues. This cone and thread style was further refined by Autoclave Engineers and others, but most people in our industry refer to the numbering system used by AE. (In "F250C" the "F" means a female fitting and "250" designates its use for 1/4 inch heavy wall tubing.)

As you can see in the above sketch, the high pressure fitting eliminates the need for sealing material by substituting a small diameter 60° cone as a metal to metal seat. By subjecting the pressure to a limited area, the forces that must be held by the threads is reduced to acceptable levels

Have A Question? Ask a Dynisco expert for more information.

  • Dynisco

    38 Forge Parkway,
    Franklin MA 02038

    +1 508 541 9400  

  • Dynisco Europe GmbH

    Pfaffenstr. 21, 74078,
    Heilbronn, Germany

    +49 7131 297 0

  • Dynisco-Viatran Instrument Sdn Bhd

    Lot 3615, Jalan SM 6/8
    32040 Seri Manjung, Perak, Malaysia     

    +605 6884014